ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.10826
29
0

High-Fidelity 3D Lung CT Synthesis in ARDS Swine Models Using Score-Based 3D Residual Diffusion Models

26 September 2024
Siyeop Yoon
Y. Oh
Xiang Li
Y. Xin
M. Cereda
Quanzheng Li
    DiffM
ArXiv (abs)PDFHTML
Abstract

Acute respiratory distress syndrome (ARDS) is a severe condition characterized by lung inflammation and respiratory failure, with a high mortality rate of approximately 40%. Traditional imaging methods, such as chest X-rays, provide only two-dimensional views, limiting their effectiveness in fully assessing lung pathology. Three-dimensional (3D) computed tomography (CT) offers a more comprehensive visualization, enabling detailed analysis of lung aeration, atelectasis, and the effects of therapeutic interventions. However, the routine use of CT in ARDS management is constrained by practical challenges and risks associated with transporting critically ill patients to remote scanners. In this study, we synthesize high-fidelity 3D lung CT from 2D generated X-ray images with associated physiological parameters using a score-based 3D residual diffusion model. Our preliminary results demonstrate that this approach can produce high-quality 3D CT images that are validated with ground truth, offering a promising solution for enhancing ARDS management.

View on arXiv
Comments on this paper