ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.10687
22
0

Building a Multivariate Time Series Benchmarking Datasets Inspired by Natural Language Processing (NLP)

14 October 2024
Mohammad Asif Ibna Mustafa
Ferdinand Heinrich
    AI4TS
ArXivPDFHTML
Abstract

Time series analysis has become increasingly important in various domains, and developing effective models relies heavily on high-quality benchmark datasets. Inspired by the success of Natural Language Processing (NLP) benchmark datasets in advancing pre-trained models, we propose a new approach to create a comprehensive benchmark dataset for time series analysis. This paper explores the methodologies used in NLP benchmark dataset creation and adapts them to the unique challenges of time series data. We discuss the process of curating diverse, representative, and challenging time series datasets, highlighting the importance of domain relevance and data complexity. Additionally, we investigate multi-task learning strategies that leverage the benchmark dataset to enhance the performance of time series models. This research contributes to the broader goal of advancing the state-of-the-art in time series modeling by adopting successful strategies from the NLP domain.

View on arXiv
Comments on this paper