ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.10395
24
0

Improved Depth Estimation of Bayesian Neural Networks

14 October 2024
Bart Van Erp
Bert De Vries
    MDE
    BDL
ArXivPDFHTML
Abstract

This paper proposes improvements over earlier work by Nazareth and Blei (2022) for estimating the depth of Bayesian neural networks. Here, we propose a discrete truncated normal distribution over the network depth to independently learn its mean and variance. Posterior distributions are inferred by minimizing the variational free energy, which balances the model complexity and accuracy. Our method improves test accuracy on the spiral data set and reduces the variance in posterior depth estimates.

View on arXiv
Comments on this paper