ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.09869
28
2

Prompt Tuning for Audio Deepfake Detection: Computationally Efficient Test-time Domain Adaptation with Limited Target Dataset

13 October 2024
Hideyuki Oiso
Yuto Matsunaga
Kazuya Kakizaki
Taiki Miyagawa
ArXivPDFHTML
Abstract

We study test-time domain adaptation for audio deepfake detection (ADD), addressing three challenges: (i) source-target domain gaps, (ii) limited target dataset size, and (iii) high computational costs. We propose an ADD method using prompt tuning in a plug-in style. It bridges domain gaps by integrating it seamlessly with state-of-the-art transformer models and/or with other fine-tuning methods, boosting their performance on target data (challenge (i)). In addition, our method can fit small target datasets because it does not require a large number of extra parameters (challenge (ii)). This feature also contributes to computational efficiency, countering the high computational costs typically associated with large-scale pre-trained models in ADD (challenge (iii)). We conclude that prompt tuning for ADD under domain gaps presents a promising avenue for enhancing accuracy with minimal target data and negligible extra computational burden.

View on arXiv
Comments on this paper