29
0

Gaussian Splatting Visual MPC for Granular Media Manipulation

Abstract

Recent advancements in learned 3D representations have enabled significant progress in solving complex robotic manipulation tasks, particularly for rigid-body objects. However, manipulating granular materials such as beans, nuts, and rice, remains challenging due to the intricate physics of particle interactions, high-dimensional and partially observable state, inability to visually track individual particles in a pile, and the computational demands of accurate dynamics prediction. Current deep latent dynamics models often struggle to generalize in granular material manipulation due to a lack of inductive biases. In this work, we propose a novel approach that learns a visual dynamics model over Gaussian splatting representations of scenes and leverages this model for manipulating granular media via Model-Predictive Control. Our method enables efficient optimization for complex manipulation tasks on piles of granular media. We evaluate our approach in both simulated and real-world settings, demonstrating its ability to solve unseen planning tasks and generalize to new environments in a zero-shot transfer. We also show significant prediction and manipulation performance improvements compared to existing granular media manipulation methods.

View on arXiv
@article{tseng2025_2410.09740,
  title={ Gaussian Splatting Visual MPC for Granular Media Manipulation },
  author={ Wei-Cheng Tseng and Ellina Zhang and Krishna Murthy Jatavallabhula and Florian Shkurti },
  journal={arXiv preprint arXiv:2410.09740},
  year={ 2025 }
}
Comments on this paper