ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.07768
14
0

Dialectical Behavior Therapy Approach to LLM Prompting

10 October 2024
Oxana Vitman
Nika Amaglobeli
Paul Plachinda
    LRM
ArXivPDFHTML
Abstract

Large language models demonstrated state-of-the-art results on various reasoning tasks when applying the chain-of-thought (CoT) prompting technique. CoT prompting guides the model into breaking tasks into a few intermediate steps and provides step-by-step demonstrations. However, solving complex reasoning tasks remains a challenge. In this paper, we propose a novel prompting strategy inspired by Dialectical Behavioral Therapy (DBT). DBT, a form of cognitive-behavioral therapy, aims to help individuals cope with stress by developing a system of reasoning. We applied DBT's basic concepts of shaping dialog to construct prompts and conducted experiments on different datasets and LLMs with various numbers of parameters. Our results show that prompts crafted with DBT techniques significantly improve results on smaller models, achieving a 7% increase in accuracy on the StrategyQA, 4.8% on Aqua dataset using 8b parameters model, and a 16.2% increase on the StrategyQA, 5.3% on GSM8K dataset with 14b parameters model.

View on arXiv
Comments on this paper