ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.04663
30
7
v1v2 (latest)

Adversarial Multi-Agent Evaluation of Large Language Models through Iterative Debates

7 October 2024
Chaithanya Bandi
Hari Bandi
Abir Harrasse
    LLMAGELM
ArXiv (abs)PDFHTML
Abstract

This paper explores optimal architectures for evaluating the outputs of large language models (LLMs) using LLMs themselves. We propose a novel framework that interprets LLMs as advocates within an ensemble of interacting agents, allowing them to defend their answers and reach conclusions through a judge and jury system. This approach offers a more dynamic and comprehensive evaluation process compared to traditional human-based assessments or automated metrics. We discuss the motivation behind this framework, its key components, and comparative advantages. We also present a probabilistic model to evaluate the error reduction achieved by iterative advocate systems. Finally, we outline experiments to validate the effectiveness of multi-advocate architectures and discuss future research directions.

View on arXiv
Comments on this paper