68
0

Khattat: Enhancing Readability and Concept Representation of Semantic Typography

Abstract

Designing expressive typography that visually conveys a word's meaning while maintaining readability is a complex task, known as semantic typography. It involves selecting an idea, choosing an appropriate font, and balancing creativity with legibility. We introduce an end-to-end system that automates this process. First, a Large Language Model (LLM) generates imagery ideas for the word, useful for abstract concepts like freedom. Then, the FontCLIP pre-trained model automatically selects a suitable font based on its semantic understanding of font attributes. The system identifies optimal regions of the word for morphing and iteratively transforms them using a pre-trained diffusion model. A key feature is our OCR-based loss function, which enhances readability and enables simultaneous stylization of multiple characters. We compare our method with other baselines, demonstrating great readability enhancement and versatility across multiple languages and writing scripts.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.