46
4

NeuralQP: A General Hypergraph-based Optimization Framework for Large-scale QCQPs

Abstract

Machine Learning (ML) optimization frameworks have gained attention for their ability to accelerate the optimization of large-scale Quadratically Constrained Quadratic Programs (QCQPs) by learning shared problem structures. However, existing ML frameworks often rely heavily on strong problem assumptions and large-scale solvers. This paper introduces NeuralQP, a general hypergraph-based framework for large-scale QCQPs. NeuralQP features two main components: Hypergraph-based Neural Prediction, which generates embeddings and predicted solutions for QCQPs without problem assumptions, and Parallel Neighborhood Optimization, which employs a McCormick relaxation-based repair strategy to identify and correct illegal variables, iteratively improving the solution with a small-scale solver. We further prove that our framework UniEGNN with our hypergraph representation is equivalent to the Interior-Point Method (IPM) for quadratic programming. Experiments on two benchmark problems and large-scale real-world instances from QPLIB demonstrate that NeuralQP outperforms state-of-the-art solvers (e.g., Gurobi and SCIP) in both solution quality and time efficiency, further validating the efficiency of ML optimization frameworks for QCQPs.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.