ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.00412
44
0

TPN: Transferable Proto-Learning Network towards Few-shot Document-Level Relation Extraction

1 October 2024
Yu Zhang
Zhao Kang
    ViT
ArXivPDFHTML
Abstract

Few-shot document-level relation extraction suffers from poor performance due to the challenging cross-domain transferability of NOTA (none-of-the-above) relation representation. In this paper, we introduce a Transferable Proto-Learning Network (TPN) to address the challenging issue. It comprises three core components: Hybrid Encoder hierarchically encodes semantic content of input text combined with attention information to enhance the relation representations. As a plug-and-play module for Out-of-Domain (OOD) Detection, Transferable Proto-Learner computes NOTA prototype through an adaptive learnable block, effectively mitigating NOTA bias across various domains. Dynamic Weighting Calibrator detects relation-specific classification confidence, serving as dynamic weights to calibrate the NOTA-dominant loss function. Finally, to bolster the model's cross-domain performance, we complement it with virtual adversarial training (VAT). We conduct extensive experimental analyses on FREDo and ReFREDo, demonstrating the superiority of TPN. Compared to state-of-the-art methods, our approach achieves competitive performance with approximately half the parameter size. Data and code are available at https://github.com/EchoDreamer/TPN.

View on arXiv
Comments on this paper