42
0

Accelerating PoT Quantization on Edge Devices

Abstract

Non-uniform quantization, such as power-of-two (PoT) quantization, matches data distributions better than uniform quantization, which reduces the quantization error of Deep Neural Networks (DNNs). PoT quantization also allows bit-shift operations to replace multiplications, but there are limited studies on the efficiency of shift-based accelerators for PoT quantization. Furthermore, existing pipelines for accelerating PoT-quantized DNNs on edge devices are not open-source. In this paper, we first design shift-based processing elements (shift-PE) for different PoT quantization methods and evaluate their efficiency using synthetic benchmarks. Then we design a shift-based accelerator using our most efficient shift-PE and propose PoTAcc, an open-source pipeline for end-to-end acceleration of PoT-quantized DNNs on resource-constrained edge devices. Using PoTAcc, we evaluate the performance of our shift-based accelerator across three DNNs. On average, it achieves a 1.23x speedup and 1.24x energy reduction compared to a multiplier-based accelerator, and a 2.46x speedup and 1.83x energy reduction compared to CPU-only execution. Our code is available at https://github.com/gicLAB/PoTAcc

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.