ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.19769
16
0

Adaptive Event-triggered Reinforcement Learning Control for Complex Nonlinear Systems

29 September 2024
Umer Siddique
Abhinav Sinha
Yongcan Cao
ArXivPDFHTML
Abstract

In this paper, we propose an adaptive event-triggered reinforcement learning control for continuous-time nonlinear systems, subject to bounded uncertainties, characterized by complex interactions. Specifically, the proposed method is capable of jointly learning both the control policy and the communication policy, thereby reducing the number of parameters and computational overhead when learning them separately or only one of them. By augmenting the state space with accrued rewards that represent the performance over the entire trajectory, we show that accurate and efficient determination of triggering conditions is possible without the need for explicit learning triggering conditions, thereby leading to an adaptive non-stationary policy. Finally, we provide several numerical examples to demonstrate the effectiveness of the proposed approach.

View on arXiv
Comments on this paper