48
1

Visual Concept Networks: A Graph-Based Approach to Detecting Anomalous Data in Deep Neural Networks

Debargha Ganguly
Debayan Gupta
Vipin Chaudhary
Abstract

Deep neural networks (DNNs), while increasingly deployed in many applications, struggle with robustness against anomalous and out-of-distribution (OOD) data. Current OOD benchmarks often oversimplify, focusing on single-object tasks and not fully representing complex real-world anomalies. This paper introduces a new, straightforward method employing graph structures and topological features to effectively detect both far-OOD and near-OOD data. We convert images into networks of interconnected human understandable features or visual concepts. Through extensive testing on two novel tasks, including ablation studies with large vocabularies and diverse tasks, we demonstrate the method's effectiveness. This approach enhances DNN resilience to OOD data and promises improved performance in various applications.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.