ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.16463
23
0

Double-Estimation-Friendly Inference for High Dimensional Misspecified Measurement Error Models

24 September 2024
Shijie Cui
Xu Guo
Runze Li
Songshan Yang
Zhe Zhang
ArXivPDFHTML
Abstract

In this paper, we introduce an innovative testing procedure for assessing individual hypotheses in high-dimensional linear regression models with measurement errors. This method remains robust even when either the X-model or Y-model is misspecified. We develop a double robust score function that maintains a zero expectation if one of the models is incorrect, and we construct a corresponding score test. We first show the asymptotic normality of our approach in a low-dimensional setting, and then extend it to the high-dimensional models. Our analysis of high-dimensional settings explores scenarios both with and without the sparsity condition, establishing asymptotic normality and non-trivial power performance under local alternatives. Simulation studies and real data analysis demonstrate the effectiveness of the proposed method.

View on arXiv
Comments on this paper