ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.15820
18
2

Supervised Fine-Tuning Achieve Rapid Task Adaption Via Alternating Attention Head Activation Patterns

24 September 2024
Yang Zhao
Li Du
Xiao Ding
Kai Xiong
Ting Liu
Bing Qin
ArXivPDFHTML
Abstract

LLMs' performance on complex tasks is still unsatisfactory. A key issue is that presently LLMs learn in a data-driven schema, while the instructions about these complex tasks are both scarce and hard to collect or construct. On the contrary, a prominent phenomenon is that LLMs can learn rather fast on simpler tasks with adequate prior knowledge captured during pretraining stage. Thus, if the prerequisite and mechanism of such rapid generalization could be elucidated, it could enhance the efficiency and effectiveness of the LLM's ability to learn complex tasks. Thus, in this paper, we employ a gradient-based method, to dissect the process that the SFT process adapts LLMs to downstream tasks via the perspective of attention patterns. We find that: (1) LLMs selectively activate task-specific attention heads during SFT; (2) activation patterns for complex tasks are combinations of basic task patterns; and (3) changes in a few parameters can significantly impact activation patterns after SFT on a small number of samples.Based on these insights, experiments are conducted to actually enhance the efficiency and effectiveness of SFT.

View on arXiv
Comments on this paper