54
3

Cross-Domain Latent Factors Sharing via Implicit Matrix Factorization

Abdulaziz Samra
Evgeney Frolov
Alexey Vasilev
Alexander Grigorievskiy
Anton Vakhrushev
Abstract

Data sparsity has been one of the long-standing problems for recommender systems. One of the solutions to mitigate this issue is to exploit knowledge available in other source domains. However, many cross-domain recommender systems introduce a complex architecture that makes them less scalable in practice. On the other hand, matrix factorization methods are still considered to be strong baselines for single-domain recommendations. In this paper, we introduce the CDIMF, a model that extends the standard implicit matrix factorization with ALS to cross-domain scenarios. We apply the Alternating Direction Method of Multipliers to learn shared latent factors for overlapped users while factorizing the interaction matrix. In a dual-domain setting, experiments on industrial datasets demonstrate a competing performance of CDIMF for both cold-start and warm-start. The proposed model can outperform most other recent cross-domain and single-domain models. We also provide the code to reproduce experiments on GitHub.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.