ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.15461
18
0

RAM2C: A Liberal Arts Educational Chatbot based on Retrieval-augmented Multi-role Multi-expert Collaboration

23 September 2024
Haoyu Huang
Tong Niu
Rui Yang
Luping Shi
ArXivPDFHTML
Abstract

Recently, many studies focus on utilizing large language models (LLMs) into educational dialogues. Especially, within liberal arts dialogues, educators must balance \textbf{H}umanized communication, \textbf{T}eaching expertise, and \textbf{S}afety-ethics (\textbf{HTS}), besides the subject knowledge itself. However, due to collecting massive amounts of HTS-compliant teaching dialogues from real world as training corpus is expensive, the outputs of existing LLMs in teaching dialogues fall short of human standards. To address this, we design a Retrieval-augmented Multi-role Multi-expert Collaboration (RAM2C) framework to automatically generate such dialogues data. Specifically, we first establish HTS-guided knowledge bases, encompassing three domain knowledge in teaching skills, psychology, and safety ethics. Then, RAM2C organizes LLMs, which are retrieval-augmented by the above different knowledge bases, into multi-experts groups with distinct roles to generate the HTS-compliant educational dialogues dataset. We then fine-tuned the LLMs using this dataset. Empirical evaluations indicate that RM2C-empowered LLMs excel in Chinese reading teaching, offering more personalized, and ethically safe teaching response, demonstrating RAM2C's practicality and high quality. We release the experiments at \hyperlink{https://github.com/ram2c/ram2c}{https://github.com/ram2c/ram2c}.

View on arXiv
Comments on this paper