15
2

Revisiting the Solution of Meta KDD Cup 2024: CRAG

Jie Ouyang
Yucong Luo
Mingyue Cheng
Daoyu Wang
Shuo Yu
Qi Liu
Enhong Chen
Abstract

This paper presents the solution of our team APEX in the Meta KDD CUP 2024: CRAG Comprehensive RAG Benchmark Challenge. The CRAG benchmark addresses the limitations of existing QA benchmarks in evaluating the diverse and dynamic challenges faced by Retrieval-Augmented Generation (RAG) systems. It provides a more comprehensive assessment of RAG performance and contributes to advancing research in this field. We propose a routing-based domain and dynamic adaptive RAG pipeline, which performs specific processing for the diverse and dynamic nature of the question in all three stages: retrieval, augmentation, and generation. Our method achieved superior performance on CRAG and ranked 2nd for Task 2&3 on the final competition leaderboard. Our implementation is available at this link: https://github.com/USTCAGI/CRAG-in-KDD-Cup2024.

View on arXiv
Comments on this paper