ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.15022
36
4

A Diagonal Structured State Space Model on Loihi 2 for Efficient Streaming Sequence Processing

23 September 2024
Svea Marie Meyer
Philipp Weidel
Philipp Plank
L. Campos-Macias
Sumit Bam Shrestha
Philipp Stratmann
M. R
ArXivPDFHTML
Abstract

Deep State-Space Models (SSM) demonstrate state-of-the art performance on long-range sequence modeling tasks. While the recurrent structure of SSMs can be efficiently implemented as a convolution or as a parallel scan during training, recurrent token-by-token processing cannot currently be implemented efficiently on GPUs. Here, we demonstrate efficient token-by-token inference of the SSM S4D on Intel's Loihi 2 state-of-the-art neuromorphic processor. We compare this first ever neuromorphic-hardware implementation of an SSM on sMNIST, psMNIST, and sCIFAR to a recurrent and a convolutional implementation of S4D on Jetson Orin Nano (Jetson). While we find Jetson to perform better in an offline sample-by-sample based batched processing mode, Loihi 2 outperforms during token-by-token based processing, where it consumes 1000 times less energy with a 75 times lower latency and a 75 times higher throughput compared to the recurrent implementation of S4D on Jetson. This opens up new avenues towards efficient real-time streaming applications of SSMs.

View on arXiv
Comments on this paper