ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.13475
44
3

PLOT: Text-based Person Search with Part Slot Attention for Corresponding Part Discovery

20 September 2024
Jicheol Park
Dongwon Kim
Boseung Jeong
Suha Kwak
ArXivPDFHTML
Abstract

Text-based person search, employing free-form text queries to identify individuals within a vast image collection, presents a unique challenge in aligning visual and textual representations, particularly at the human part level. Existing methods often struggle with part feature extraction and alignment due to the lack of direct part-level supervision and reliance on heuristic features. We propose a novel framework that leverages a part discovery module based on slot attention to autonomously identify and align distinctive parts across modalities, enhancing interpretability and retrieval accuracy without explicit part-level correspondence supervision. Additionally, text-based dynamic part attention adjusts the importance of each part, further improving retrieval outcomes. Our method is evaluated on three public benchmarks, significantly outperforming existing methods.

View on arXiv
Comments on this paper