ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.13187
30
2

Cooperative Resilience in Artificial Intelligence Multiagent Systems

20 September 2024
Manuela Chacon-Chamorro
Luis Felipe Giraldo
Nicanor Quijano
Vicente Vargas-Panesso
César González
Juan Sebastian Pinzon
Ruben Manrique
Manuel Rios
Yesid Fonseca
Daniel Gómez-Barrera
Mónica Perdomo-Pérez
ArXivPDFHTML
Abstract

Resilience refers to the ability of systems to withstand, adapt to, and recover from disruptive events. While studies on resilience have attracted significant attention across various research domains, the precise definition of this concept within the field of cooperative artificial intelligence remains unclear. This paper addresses this gap by proposing a clear definition of `cooperative resilience' and outlining a methodology for its quantitative measurement. The methodology is validated in an environment with RL-based and LLM-augmented autonomous agents, subjected to environmental changes and the introduction of agents with unsustainable behaviors. These events are parameterized to create various scenarios for measuring cooperative resilience. The results highlight the crucial role of resilience metrics in analyzing how the collective system prepares for, resists, recovers from, sustains well-being, and transforms in the face of disruptions. These findings provide foundational insights into the definition, measurement, and preliminary analysis of cooperative resilience, offering significant implications for the broader field of AI. Moreover, the methodology and metrics developed here can be adapted to a wide range of AI applications, enhancing the reliability and effectiveness of AI in dynamic and unpredictable environments.

View on arXiv
Comments on this paper