ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.13147
19
0

The Impact of Feature Embedding Placement in the Ansatz of a Quantum Kernel in QSVMs

20 September 2024
Ilmo Salmenperä
Ilmars Kuhtarskis
Arianne Meijer van de Griend
Jukka K. Nurminen
ArXivPDFHTML
Abstract

Designing a useful feature map for a quantum kernel is a critical task when attempting to achieve an advantage over classical machine learning models. The choice of circuit architecture, i.e. how feature-dependent gates should be interwoven with other gates is a relatively unexplored problem and becomes very important when using a model of quantum kernels called Quantum Embedding Kernels (QEK). We study and categorize various architectural patterns in QEKs and show that existing architectural styles do not behave as the literature supposes. We also produce a novel alternative architecture based on the old ones and show that it performs equally well while containing fewer gates than its older counterparts.

View on arXiv
Comments on this paper