ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.13107
34
5

Towards Robust Automation of Surgical Systems via Digital Twin-based Scene Representations from Foundation Models

19 September 2024
Hao Ding
Lalithkumar Seenivasan
Hongchao Shu
Grayson Byrd
Han Zhang
Pu Xiao
Juan Antonio Barragan
Russell H. Taylor
Peter Kazanzides
Mathias Unberath
ArXivPDFHTML
Abstract

Large language model-based (LLM) agents are emerging as a powerful enabler of robust embodied intelligence due to their capability of planning complex action sequences. Sound planning ability is necessary for robust automation in many task domains, but especially in surgical automation. These agents rely on a highly detailed natural language representation of the scene. Thus, to leverage the emergent capabilities of LLM agents for surgical task planning, developing similarly powerful and robust perception algorithms is necessary to derive a detailed scene representation of the environment from visual input. Previous research has focused primarily on enabling LLM-based task planning while adopting simple yet severely limited perception solutions to meet the needs for bench-top experiments but lack the critical flexibility to scale to less constrained settings. In this work, we propose an alternate perception approach -- a digital twin-based machine perception approach that capitalizes on the convincing performance and out-of-the-box generalization of recent vision foundation models. Integrating our digital twin-based scene representation and LLM agent for planning with the dVRK platform, we develop an embodied intelligence system and evaluate its robustness in performing peg transfer and gauze retrieval tasks. Our approach shows strong task performance and generalizability to varied environment settings. Despite convincing performance, this work is merely a first step towards the integration of digital twin-based scene representations. Future studies are necessary for the realization of a comprehensive digital twin framework to improve the interpretability and generalizability of embodied intelligence in surgery.

View on arXiv
Comments on this paper