55
3

MambaRecon: MRI Reconstruction with Structured State Space Models

Yilmaz Korkmaz
V. Patel
Abstract

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modalities as it provides superior resolution of soft tissues, albeit with a notable limitation in scanning speed. The advent of deep learning has catalyzed the development of cutting-edge methods for the expedited reconstruction of MRI scans, utilizing convolutional neural networks and, more recently, vision transformers. Recently proposed structured state space models (e.g., Mamba) have gained some traction due to their efficiency and low computational requirements compared to transformer models. We propose an innovative MRI reconstruction framework that employs structured state space models at its core, aimed at amplifying both long-range contextual sensitivity and reconstruction efficacy. Comprehensive experiments on public brain MRI datasets show that our model sets new benchmarks beating state-of-the-art reconstruction baselines. Code will be available (https://github.com/yilmazkorkmaz1/MambaRecon).

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.