ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.12366
34
1

Bilevel Optimization for Real-Time Control with Application to Locomotion Gait Generation

18 September 2024
Zachary Olkin
Aaron D. Ames
ArXivPDFHTML
Abstract

Model Predictive Control (MPC) is a common tool for the control of nonlinear, real-world systems, such as legged robots. However, solving MPC quickly enough to enable its use in real-time is often challenging. One common solution is given by real-time iterations, which does not solve the MPC problem to convergence, but rather close enough to give an approximate solution. In this paper, we extend this idea to a bilevel control framework where a "high-level" optimization program modifies a controller parameter of a "low-level" MPC problem which generates the control inputs and desired state trajectory. We propose an algorithm to iterate on this bilevel program in real-time and provide conditions for its convergence and improvements in stability. We then demonstrate the efficacy of this algorithm by applying it to a quadrupedal robot where the high-level problem optimizes a contact schedule in real-time. We show through simulation that the algorithm can yield improvements in disturbance rejection and optimality, while creating qualitatively new gaits.

View on arXiv
Comments on this paper