ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.12328
24
0

SplitVAEs: Decentralized scenario generation from siloed data for stochastic optimization problems

18 September 2024
H M Mohaimanul Islam
Huynh Q. N. Vo
P. Ramanan
ArXivPDFHTML
Abstract

Stochastic optimization problems in large-scale multi-stakeholder networked systems (e.g., power grids and supply chains) rely on data-driven scenarios to encapsulate complex spatiotemporal interdependencies. However, centralized aggregation of stakeholder data is challenging due to the existence of data silos resulting from computational and logistical bottlenecks. In this paper, we present SplitVAEs, a decentralized scenario generation framework that leverages variational autoencoders to generate high-quality scenarios without moving stakeholder data. With the help of experiments on distributed memory systems, we demonstrate the broad applicability of SplitVAEs in a variety of domain areas that are dominated by a large number of stakeholders. Our experiments indicate that SplitVAEs can learn spatial and temporal interdependencies in large-scale networks to generate scenarios that match the joint historical distribution of stakeholder data in a decentralized manner. Our experiments show that SplitVAEs deliver robust performance compared to centralized, state-of-the-art benchmark methods while significantly reducing data transmission costs, leading to a scalable, privacy-enhancing alternative to scenario generation.

View on arXiv
Comments on this paper