ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.10429
38
1

Meta-Whisper: Speech-Based Meta-ICL for ASR on Low-Resource Languages

16 September 2024
Ming-Hao Hsu
Kuan Po Huang
Hung-yi Lee
ArXivPDFHTML
Abstract

This paper presents Meta-Whisper, a novel approach to improve automatic speech recognition (ASR) for low-resource languages using the Whisper model. By leveraging Meta In-Context Learning (Meta-ICL) and a k-Nearest Neighbors (KNN) algorithm for sample selection, Meta-Whisper enhances Whisper's ability to recognize speech in unfamiliar languages without extensive fine-tuning. Experiments on the ML-SUPERB dataset show that Meta-Whisper significantly reduces the Character Error Rate (CER) for low-resource languages compared to the original Whisper model. This method offers a promising solution for developing more adaptable multilingual ASR systems, particularly for languages with limited resources.

View on arXiv
Comments on this paper