ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.08798
33
0

Reading ability detection using eye-tracking data with LSTM-based few-shot learning

13 September 2024
Nanxi Li
Hongjiang Wang
Zehui Zhan
ArXivPDFHTML
Abstract

Reading ability detection is important in modern educational field. In this paper, a method of predicting scores of reading ability is proposed, using the eye-tracking data of a few subjects (e.g., 68 subjects). The proposed method built a regression model for the score prediction by combining Long Short Time Memory (LSTM) and light-weighted neural networks. Experiments show that with few-shot learning strategy, the proposed method achieved higher accuracy than previous methods of score prediction in reading ability detection. The code can later be downloaded at https://github.com/pumpkinLNX/LSTM-eye-tracking-pytorch.git

View on arXiv
Comments on this paper