75
1

Multi-Modal Instruction-Tuning Small-Scale Language-and-Vision Assistant for Semiconductor Electron Micrograph Analysis

Sakhinana Sagar Srinivas
Geethan Sannidhi
Venkataramana Runkana
Abstract

We present a novel framework for analyzing and interpreting electron microscopy images in semiconductor manufacturing using vision-language instruction tuning. The framework employs a unique teacher-student approach, leveraging pre-trained multimodal large language models such as GPT-4 to generate instruction-following data for zero-shot visual question answering (VQA) and classification tasks, customizing smaller multimodal models (SMMs) for microscopy image analysis, resulting in an instruction-tuned language-and-vision assistant. Our framework merges knowledge engineering with machine learning to integrate domain-specific expertise from larger to smaller multimodal models within this specialized field, greatly reducing the need for extensive human labeling. Our study presents a secure, cost-effective, and customizable approach for analyzing microscopy images, addressing the challenges of adopting proprietary models in semiconductor manufacturing.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.