ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.07359
27
2

Training-Free Guidance for Discrete Diffusion Models for Molecular Generation

11 September 2024
Thomas J. Kerby
Kevin R. Moon
ArXivPDFHTML
Abstract

Training-free guidance methods for continuous data have seen an explosion of interest due to the fact that they enable foundation diffusion models to be paired with interchangable guidance models. Currently, equivalent guidance methods for discrete diffusion models are unknown. We present a framework for applying training-free guidance to discrete data and demonstrate its utility on molecular graph generation tasks using the discrete diffusion model architecture of DiGress. We pair this model with guidance functions that return the proportion of heavy atoms that are a specific atom type and the molecular weight of the heavy atoms and demonstrate our method's ability to guide the data generation.

View on arXiv
Comments on this paper