ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.06708
27
2

Ensuring Fairness with Transparent Auditing of Quantitative Bias in AI Systems

24 August 2024
Chih-Cheng Rex Yuan
Bow-Yaw Wang
ArXivPDFHTML
Abstract

With the rapid advancement of AI, there is a growing trend to integrate AI into decision-making processes. However, AI systems may exhibit biases that lead decision-makers to draw unfair conclusions. Notably, the COMPAS system used in the American justice system to evaluate recidivism was found to favor racial majority groups; specifically, it violates a fairness standard called equalized odds. Various measures have been proposed to assess AI fairness. We present a framework for auditing AI fairness, involving third-party auditors and AI system providers, and we have created a tool to facilitate systematic examination of AI systems. The tool is open-sourced and publicly available. Unlike traditional AI systems, we advocate a transparent white-box and statistics-based approach. It can be utilized by third-party auditors, AI developers, or the general public for reference when judging the fairness criterion of AI systems.

View on arXiv
Comments on this paper