36
0

Autonomous Iterative Motion Learning (AI-MOLE) of a SCARA Robot for Automated Myocardial Injection

Abstract

Stem cell therapy is a promising approach to treat heart insufficiency and benefits from automated myocardial injection which requires highly precise motion of a robotic manipulator that is equipped with a syringe. This work investigates whether sufficiently precise motion can be achieved by combining a SCARA robot and learning control methods. For this purpose, the method Autonomous Iterative Motion Learning (AI-MOLE) is extended to be applicable to multi-input/multi-output systems. The proposed learning method solves reference tracking tasks in systems with unknown, nonlinear, multi-input/multi-output dynamics by iteratively updating an input trajectory in a plug-and-play fashion and without requiring manual parameter tuning. The proposed learning method is validated in a preliminary simulation study of a simplified SCARA robot that has to perform three desired motions. The results demonstrate that the proposed learning method achieves highly precise reference tracking without requiring any a priori model information or manual parameter tuning in as little as 15 trials per motion. The results further indicate that the combination of a SCARA robot and learning method achieves sufficiently precise motion to potentially enable automatic myocardial injection if similar results can be obtained in a real-world setting.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.