52
1

Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks

Abstract

The computational inefficiency of spiking neural networks (SNNs) is primarily due to the sequential updates of membrane potential, which becomes more pronounced during extended encoding periods compared to artificial neural networks (ANNs). This highlights the need to parallelize SNN computations effectively to leverage available hardware parallelism. To address this, we propose Membrane Potential Estimation Parallel Spiking Neurons (MPE-PSN), a parallel computation method for spiking neurons that enhances computational efficiency by enabling parallel processing while preserving the intrinsic dynamic characteristics of SNNs. Our approach exhibits promise for enhancing computational efficiency, particularly under conditions of elevated neuron density. Empirical experiments demonstrate that our method achieves state-of-the-art (SOTA) accuracy and efficiency on neuromorphic datasets. Codes are available at~\url{this https URL}. \end{abstract}

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.