ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.00051
11
0

OnDiscuss: An Epistemic Network Analysis Learning Analytics Visualization Tool for Evaluating Asynchronous Online Discussions

19 August 2024
Yanye Luther
Marcia Moraes
Sudipto Ghosh
James Folkestad
ArXivPDFHTML
Abstract

Asynchronous online discussions are common assignments in both hybrid and online courses to promote critical thinking and collaboration among students. However, the evaluation of these assignments can require considerable time and effort from instructors. We created OnDiscuss, a learning analytics visualization tool for instructors that utilizes text mining algorithms and Epistemic Network Analysis (ENA) to generate visualizations of student discussion data. Text mining is used to generate an initial codebook for the instructor as well as automatically code the data. This tool allows instructors to edit their codebook and then dynamically view the resulting ENA networks for the entire class and individual students. Through empirical investigation, we assess this tool's effectiveness to help instructors in analyzing asynchronous online discussion assignments.

View on arXiv
Comments on this paper