ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.16686
66
0
v1v2 (latest)

CW-CNN & CW-AN: Convolutional Networks and Attention Networks for CW-Complexes

29 August 2024
Rahul Khorana
ArXiv (abs)PDFHTML
Abstract

We present a novel framework for learning on CW-complex structured data points. Recent advances have discussed CW-complexes as ideal learning representations for problems in cheminformatics. However, there is a lack of available machine learning methods suitable for learning on CW-complexes. In this paper we develop notions of convolution and attention that are well defined for CW-complexes. These notions enable us to create the first neural network that can receive a CW-complex as input. We illustrate and interpret this framework in the context of supervised prediction.

View on arXiv
Comments on this paper