59
2

Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides

Abstract

Molecular Dynamics (MD) simulations are irreplaceable and ubiquitous in fields of materials science, chemistry, pharmacology just to name a few. Conventional MD simulations are plagued by numerical stability as well as long equilibration time issues, which limits broader applications of MD simulations. Recently, a surge of deep learning approaches have been devised for time-coarsened dynamics, which learns the state transition mechanism over much larger time scales to overcome these limitations. However, only a few methods target the underlying Boltzmann distribution by resampling techniques, where proposals are rarely accepted as new states with low efficiency. In this work, we propose a force-guided bridge matching model, FBM, a novel framework that first incorporates physical priors into bridge matching for full-atom time-coarsened dynamics. With the guidance of our well-designed intermediate force field, FBM is feasible to target the Boltzmann-like distribution by direct inference without extra steps. Experiments on small peptides verify our superiority in terms of comprehensive metrics and demonstrate transferability to unseen peptide systems.

View on arXiv
Comments on this paper