ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.12996
22
1

Enhancing Knowledge Tracing with Concept Map and Response Disentanglement

23 August 2024
Soonwook Park
Donghoon Lee
Hogun Park
    AI4Ed
ArXivPDFHTML
Abstract

In the rapidly advancing realm of educational technology, it becomes critical to accurately trace and understand student knowledge states. Conventional Knowledge Tracing (KT) models have mainly focused on binary responses (i.e., correct and incorrect answers) to questions. Unfortunately, they largely overlook the essential information in students' actual answer choices, particularly for Multiple Choice Questions (MCQs), which could help reveal each learner's misconceptions or knowledge gaps. To tackle these challenges, we propose the Concept map-driven Response disentanglement method for enhancing Knowledge Tracing (CRKT) model. CRKT benefits KT by directly leveraging answer choices--beyond merely identifying correct or incorrect answers--to distinguish responses with different incorrect choices. We further introduce the novel use of unchosen responses by employing disentangled representations to get insights from options not selected by students. Additionally, CRKT tracks the student's knowledge state at the concept level and encodes the concept map, representing the relationships between them, to better predict unseen concepts. This approach is expected to provide actionable feedback, improving the learning experience. Our comprehensive experiments across multiple datasets demonstrate CRKT's effectiveness, achieving superior performance in prediction accuracy and interpretability over state-of-the-art models.

View on arXiv
Comments on this paper