ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.12609
29
0

Enhanced Prediction of Multi-Agent Trajectories via Control Inference and State-Space Dynamics

8 August 2024
Yu Zhang
Yongxiang Zou
Haoyu Zhang
Zeyu Liu
Houcheng Li
Long Cheng
    AI4CE
ArXivPDFHTML
Abstract

In the field of autonomous systems, accurately predicting the trajectories of nearby vehicles and pedestrians is crucial for ensuring both safety and operational efficiency. This paper introduces a novel methodology for trajectory forecasting based on state-space dynamic system modeling, which endows agents with models that have tangible physical implications. To enhance the precision of state estimations within the dynamic system, the paper also presents a novel modeling technique for control variables. This technique utilizes a newly introduced model, termed "Mixed Mamba," to derive initial control states, thereby improving the predictive accuracy of these variables. Moverover, the proposed approach ingeniously integrates graph neural networks with state-space models, effectively capturing the complexities of multi-agent interactions. This combination provides a robust and scalable framework for forecasting multi-agent trajectories across a range of scenarios. Comprehensive evaluations demonstrate that this model outperforms several established benchmarks across various metrics and datasets, highlighting its significant potential to advance trajectory forecasting in autonomous systems.

View on arXiv
Comments on this paper