ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.12596
37
1

Poplar: Efficient Scaling of Distributed DNN Training on Heterogeneous GPU Clusters

22 August 2024
WenZheng Zhang
Yang Hu
Jing Shi
Xiaoying Bai
ArXivPDFHTML
Abstract

Scaling Deep Neural Networks (DNNs) requires significant computational resources in terms of GPU quantity and compute capacity. In practice, there usually exists a large number of heterogeneous GPU devices due to the rapid release cycle of GPU products. It is highly needed to efficiently and economically harness the power of heterogeneous GPUs, so that it can meet the requirements of DNN research and development. The paper introduces Poplar, a distributed training system that extends Zero Redundancy Optimizer (ZeRO) with heterogeneous-aware capabilities. We explore a broader spectrum of GPU heterogeneity, including compute capability, memory capacity, quantity and a combination of them. In order to achieve high computational efficiency across all heterogeneous conditions, Poplar conducts fine-grained measurements of GPUs in each ZeRO stage. We propose a novel batch allocation method and a search algorithm to optimize the utilization of heterogeneous GPUs clusters. Furthermore, Poplar implements fully automated parallelism, eliminating the need for deploying heterogeneous hardware and finding suitable batch size. Extensive experiments on three heterogeneous clusters, comprising six different types of GPUs, demonstrate that Poplar achieves a training throughput improvement of 1.02-3.92x over current state-of-the-art heterogeneous training systems.

View on arXiv
Comments on this paper