ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.12365
32
0

Enhancing Uncertainty Communication in Time Series Predictions: Insights and Recommendations

22 August 2024
Apoorva Karagappa
Pawandeep Kaur Betz
J. Gilg
Moritz Zeumer
Andreas Gerndt
Bernhard Preim
    AI4TS
ArXivPDFHTML
Abstract

As the world increasingly relies on mathematical models for forecasts in different areas, effective communication of uncertainty in time series predictions is important for informed decision making. This study explores how users estimate probabilistic uncertainty in time series predictions under different variants of line charts depicting uncertainty. It examines the role of individual characteristics and the influence of user-reported metrics on uncertainty estimations. By addressing these aspects, this paper aims to enhance the understanding of uncertainty visualization and for improving communication in time series forecast visualizations and the design of prediction data dashboards.As the world increasingly relies on mathematical models for forecasts in different areas, effective communication of uncertainty in time series predictions is important for informed decision making. This study explores how users estimate probabilistic uncertainty in time series predictions under different variants of line charts depicting uncertainty. It examines the role of individual characteristics and the influence of user-reported metrics on uncertainty estimations. By addressing these aspects, this paper aims to enhance the understanding of uncertainty visualization and for improving communication in time series forecast visualizations and the design of prediction data dashboards.

View on arXiv
Comments on this paper