ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.12087
16
0

Highly Accurate Robot Calibration Using Adaptive and Momental Bound with Decoupled Weight Decay

22 August 2024
Tinghui Chen
Shuai Li
ArXivPDFHTML
Abstract

Within the context of intelligent manufacturing, industrial robots have a pivotal function. Nonetheless, extended operational periods cause a decline in their absolute positioning accuracy, preventing them from meeting high precision. To address this issue, this paper presents a novel robot algorithm that combines an adaptive and momental bound algorithm with decoupled weight decay (AdaModW), which has three-fold ideas: a) adopting an adaptive moment estimation (Adam) algorithm to achieve a high convergence rate, b) introducing a hyperparameter into the Adam algorithm to define the length of memory, effectively addressing the issue of the abnormal learning rate, and c) interpolating a weight decay coefficient to improve its generalization. Numerous experiments on an HRS-JR680 industrial robot show that the presented algorithm significantly outperforms state-of-the-art algorithms in robot calibration performance. Thus, in light of its reliability, this algorithm provides an efficient way to address robot calibration concerns.

View on arXiv
Comments on this paper