ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.11455
28
0

Using Part-based Representations for Explainable Deep Reinforcement Learning

21 August 2024
Manos Kirtas
Konstantinos Tsampazis
Loukia Avramelou
Nikolaos Passalis
Anastasios Tefas
ArXivPDFHTML
Abstract

Utilizing deep learning models to learn part-based representations holds significant potential for interpretable-by-design approaches, as these models incorporate latent causes obtained from feature representations through simple addition. However, training a part-based learning model presents challenges, particularly in enforcing non-negative constraints on the model's parameters, which can result in training difficulties such as instability and convergence issues. Moreover, applying such approaches in Deep Reinforcement Learning (RL) is even more demanding due to the inherent instabilities that impact many optimization methods. In this paper, we propose a non-negative training approach for actor models in RL, enabling the extraction of part-based representations that enhance interpretability while adhering to non-negative constraints. To this end, we employ a non-negative initialization technique, as well as a modified sign-preserving training method, which can ensure better gradient flow compared to existing approaches. We demonstrate the effectiveness of the proposed approach using the well-known Cartpole benchmark.

View on arXiv
Comments on this paper