ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.10571
29
7

Prompt-Agnostic Adversarial Perturbation for Customized Diffusion Models

20 August 2024
Cong Wan
Yuhang He
Xiang Song
Yihong Gong
    DiffM
    AAML
ArXivPDFHTML
Abstract

Diffusion models have revolutionized customized text-to-image generation, allowing for efficient synthesis of photos from personal data with textual descriptions. However, these advancements bring forth risks including privacy breaches and unauthorized replication of artworks. Previous researches primarily center around using prompt-specific methods to generate adversarial examples to protect personal images, yet the effectiveness of existing methods is hindered by constrained adaptability to different prompts. In this paper, we introduce a Prompt-Agnostic Adversarial Perturbation (PAP) method for customized diffusion models. PAP first models the prompt distribution using a Laplace Approximation, and then produces prompt-agnostic perturbations by maximizing a disturbance expectation based on the modeled distribution. This approach effectively tackles the prompt-agnostic attacks, leading to improved defense stability. Extensive experiments in face privacy and artistic style protection, demonstrate the superior generalization of PAP in comparison to existing techniques. Our project page is available at https://github.com/vancyland/Prompt-Agnostic-Adversarial-Perturbation-for-Customized-Diffusion-Models.github.io.

View on arXiv
Comments on this paper