ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.10516
29
0

Data Augmentation Integrating Dialogue Flow and Style to Adapt Spoken Dialogue Systems to Low-Resource User Groups

20 August 2024
Zhiyang Qi
Michimasa Inaba
ArXivPDFHTML
Abstract

This study addresses the interaction challenges encountered by spoken dialogue systems (SDSs) when engaging with users who exhibit distinct conversational behaviors, particularly minors, in scenarios where data are scarce. We propose a novel data augmentation framework to enhance SDS performance for user groups with limited resources. Our approach leverages a large language model (LLM) to extract speaker styles and a pre-trained language model (PLM) to simulate dialogue act history. This method generates enriched and personalized dialogue data, facilitating improved interactions with unique user demographics. Extensive experiments validate the efficacy of our methodology, highlighting its potential to foster the development of more adaptive and inclusive dialogue systems.

View on arXiv
Comments on this paper