ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.10419
39
1

Second-Order Forward-Mode Automatic Differentiation for Optimization

19 August 2024
Adam D. Cobb
Atılım Güneş Baydin
Barak A. Pearlmutter
Susmit Jha
    ODL
ArXivPDFHTML
Abstract

This paper introduces a second-order hyperplane search, a novel optimization step that generalizes a second-order line search from a line to a kkk-dimensional hyperplane. This, combined with the forward-mode stochastic gradient method, yields a second-order optimization algorithm that consists of forward passes only, completely avoiding the storage overhead of backpropagation. Unlike recent work that relies on directional derivatives (or Jacobian--Vector Products, JVPs), we use hyper-dual numbers to jointly evaluate both directional derivatives and their second-order quadratic terms. As a result, we introduce forward-mode weight perturbation with Hessian information (FoMoH). We then use FoMoH to develop a novel generalization of line search by extending it to a hyperplane search. We illustrate the utility of this extension and how it might be used to overcome some of the recent challenges of optimizing machine learning models without backpropagation. Our code is open-sourced at https://github.com/SRI-CSL/fomoh.

View on arXiv
Comments on this paper