ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.09918
38
1

Expressive Power of Temporal Message Passing

19 August 2024
Przemysław Andrzej Wałęga
Michael Rawson
ArXivPDFHTML
Abstract

Graph neural networks (GNNs) have recently been adapted to temporal settings, often employing temporal versions of the message-passing mechanism known from GNNs. We divide temporal message passing mechanisms from literature into two main types: global and local, and establish Weisfeiler-Leman characterisations for both. This allows us to formally analyse expressive power of temporal message-passing models. We show that global and local temporal message-passing mechanisms have incomparable expressive power when applied to arbitrary temporal graphs. However, the local mechanism is strictly more expressive than the global mechanism when applied to colour-persistent temporal graphs, whose node colours are initially the same in all time points. Our theoretical findings are supported by experimental evidence, underlining practical implications of our analysis.

View on arXiv
Comments on this paper