ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.09869
24
7

Docling Technical Report

19 August 2024
Christoph Auer
Maksym Lysak
Ahmed Nassar
Michele Dolfi
Nikolaos Livathinos
Panos Vagenas
Cesar Berrospi Ramis
Matteo Omenetti
Fabian Lindlbauer
K. Dinkla
Lokesh Mishra
Yusik Kim
Shubham Gupta
Rafael Teixeira de Lima
Valéry Weber
Lucas Morin
Ingmar Meijer
Viktor Kuropiatnyk
Peter W. J. Staar
    LMTD
ArXivPDFHTML
Abstract

This technical report introduces Docling, an easy to use, self-contained, MIT-licensed open-source package for PDF document conversion. It is powered by state-of-the-art specialized AI models for layout analysis (DocLayNet) and table structure recognition (TableFormer), and runs efficiently on commodity hardware in a small resource budget. The code interface allows for easy extensibility and addition of new features and models.

View on arXiv
Comments on this paper