ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.08909
18
3

An Adaptive Differential Privacy Method Based on Federated Learning

13 August 2024
Zhiqiang Wang
Xinyue Yu
Qianli Huang
Yongguang Gong
    FedML
ArXivPDFHTML
Abstract

Differential privacy is one of the methods to solve the problem of privacy protection in federated learning. Setting the same privacy budget for each round will result in reduced accuracy in training. The existing methods of the adjustment of privacy budget consider fewer influencing factors and tend to ignore the boundaries, resulting in unreasonable privacy budgets. Therefore, we proposed an adaptive differential privacy method based on federated learning. The method sets the adjustment coefficient and scoring function according to accuracy, loss, training rounds, and the number of datasets and clients. And the privacy budget is adjusted based on them. Then the local model update is processed according to the scaling factor and the noise. Fi-nally, the server aggregates the noised local model update and distributes the noised global model. The range of parameters and the privacy of the method are analyzed. Through the experimental evaluation, it can reduce the privacy budget by about 16%, while the accuracy remains roughly the same.

View on arXiv
Comments on this paper