ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.08888
18
1

A Classifier-Based Approach to Multi-Class Anomaly Detection Applied to Astronomical Time-Series

5 August 2024
Rithwik Gupta
D. Muthukrishna
Michelle Lochner
ArXivPDFHTML
Abstract

Automating anomaly detection is an open problem in many scientific fields, particularly in time-domain astronomy, where modern telescopes generate millions of alerts per night. Currently, most anomaly detection algorithms for astronomical time-series rely either on hand-crafted features or on features generated through unsupervised representation learning, coupled with standard anomaly detection algorithms. In this work, we introduce a novel approach that leverages the latent space of a neural network classifier for anomaly detection. We then propose a new method called Multi-Class Isolation Forests (MCIF), which trains separate isolation forests for each class to derive an anomaly score for an object based on its latent space representation. This approach significantly outperforms a standard isolation forest when distinct clusters exist in the latent space. Using a simulated dataset emulating the Zwicky Transient Facility (54 anomalies and 12,040 common), our anomaly detection pipeline discovered 46±346\pm346±3 anomalies (∼85%\sim 85\%∼85% recall) after following up the top 2,000 (∼15%\sim 15\%∼15%) ranked objects. Furthermore, our classifier-based approach outperforms or approaches the performance of other state-of-the-art anomaly detection pipelines. Our novel method demonstrates that existing and new classifiers can be effectively repurposed for real-time anomaly detection. The code used in this work, including a Python package, is publicly available, https://github.com/Rithwik-G/AstroMCAD.

View on arXiv
Comments on this paper