ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.08694
18
0

Quantifying the Effectiveness of Student Organization Activities using Natural Language Processing

16 August 2024
Lyberius Ennio F. Taruc
A. R. L. Cruz
ArXivPDFHTML
Abstract

Student extracurricular activities play an important role in enriching the students' educational experiences. With the increasing popularity of Machine Learning and Natural Language Processing, it becomes a logical step that incorporating ML-NLP in improving extracurricular activities is a potential focus of study in Artificial Intelligence (AI). This research study aims to develop a machine learning workflow that will quantify the effectiveness of student-organized activities based on student emotional responses using sentiment analysis. The study uses the Bidirectional Encoder Representations from Transformers (BERT) Large Language Model (LLM) called via the pysentimiento toolkit, as a Transformer pipeline in Hugging Face. A sample data set from Organization C, a Recognized Student Organization (RSO) of a higher educational institute in the Philippines, College X, was used to develop the workflow. The workflow consisted of data preprocessing, key feature selection, LLM feature processing, and score aggregation, resulting in an Event Score for each data set. The results show that the BERT LLM can also be used effectively in analyzing sentiment beyond product reviews and post comments. For the student affairs offices of educational institutions, this study can provide a practical example of how NLP can be applied to real-world scenarios, showcasing the potential impact of data-driven decision making.

View on arXiv
Comments on this paper